

Who am I?

- Emilien Macchi
- French citizen residing in Montreal
- Software Engineer at eNovance (by Red Hat)
- Active contributor involved in OpenStack since 2011
- Specialized in Automation & Product development
- Passionated by traveling, running and learning new things

Back in old-days

- Plan the project
- Estimate resources we need
- Submit a ticket
- Wait
- Wait a bit more...
- Get what you need (sometimes)

Change the model

- Still users/devs
- Ticket System to API's
- Server/Network/Storage admins to Cloud admins that feed resource pools
- Agile, scalable, automated, predictable

What is OpenStack?

- Open-Source laaS Cloud Software
- Launched by NASA and Rackspace in 2010
- Massively scalable
- Managed by the OpenStack Foundation
- Fast grow and large adoption
- Release every 6 months
- 10 releases (current stable is Juno)
- Upgrades supported

Who is doing OpenStack?

- 130 organizations
- 1,420 devs
- 18,704 commits

OpenStack Dashboard

Use-cases

- SaaS and Web vendors
 - Delivering a SaaS (ERP) application with Swift
- Service Providers
 - Provides SIP-based call control for voice and video
- Enterprise Private Cloud & IT Operations
 - Private Cloud for HPC Cancer Research
- Infrastructure technology suppliers
 - Provide Storage driver for Cinder

- Command-line interfaces (nova, neutron, swift, and so on)
 Cloud Management Tools (Rightscale, Enstratius, and so on.)
 GUI tools (Pashboard, Cyberduck, iPhone client, and so on.)

What you need

- Reference Architecture
- Supportability
- Stability & Code maturity
- Lifecycle
- Certified Hardware
- Certified Operating System
- Storage, Network, Virtualization, Ecosystem, Security

- Scalable
- Highly available
- Flexible
- Secure

Scalable bare-metal deployment

- Image-based deployment
- Build images in advance
 - Automated with Jenkins
 - Once built and archived => reproducible at wish
- Philosophy:
 - Reusable images for all customers, so no specific to configuration
 - Configuration will be done by an config management system like Puppet

OpenStack Images

- Install Server
 - Puppet master
 - Bare-metal provisionning server
 - Upgrade server
 - CI server
- OpenStack Full
 - All OpenStack & Ceph services with none activated
 - Puppet client

eDeploy

- Bare-metal provisioner
- Based on standard protocols (PXE / iPXE, HTTP and rsync)
- Automatic Hardware matching
- No auto-install description: powerful configuration by Python scripts to do only the hardware config.

Hardware Validator: AHC

- Automatic Health Check
- Check that hardware is ready to receive OpenStack
- Validate machine components individually
- Validate the set of machines
- Detect black sheeps
- Integrated in eDeploy

Step-by-step deployment

- Based on 100% upstream Puppet modules (~50)
- OpenStack services configuration for HA architectures
- Flexible to many use cases and customer specifics settings
- Evolve with deployments
- Fully unit tested
- Deployment as a 5 steps scenario where each step:
 - Is composed of Puppet classes managed by Hiera
 - Is validated by integration tests (serverspec)
 - Can be debugged easily (TDD style)

Step-by-step workflow

Sanity

- Validate an OpenStack deployment
- Based on Tempest to validate API / CLI (1600 tests)
- Javelin to test resource surviving after an upgrade
- Smoke scripts to create resources within a scenario

Deployment by Jenkins Jobs

5 jobs:

- AHC: hardware validation
- eDeploy: bootstrap / hardware management
- Puppet: configuration
- Sanity: validation
- Upgrade: upgrade the platform to the last release

Upgrade process

- eDeploy image-base:
 - Predictible and reproducible
 - Faster than package upgrades (rsync vs packaging)
- Orchestrated by Ansible playbook
- Configuration updated by Puppet
- Validated by Tempest (javelin + functional tests)
- Works only from n to n+1 (n to n+2 not possible)

Upgrade preparation

Upgrade execution

Do it yourself

- OpenStack core projects from upstream
- OpenStack Puppet modules from Stackforge & Puppetlabs
- eDeploy & configuration tools on Github / eNovance
 - https://github.com/enovance/edeploy
 - https://github.com/enovance/edeploy-roles
 - https://github.com/enovance/config-tools
 - https://github.com/stackforge/puppet-openstack-cloud/
 - https://github.com/enovance/openstack-yaml-infra
 - http://spinalstack.enovance.com

THANK YOU

emilien@redhat.com

@EmilienMacchi